Hochpunkte - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 3 | A.24.01
Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibts eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...
Kubische Funktion, Hochpunkte und Tiefpunkte kubischer Parabeln berechnen | A.05.03
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach x auf, erhält man die x-Werte Hoch- und Tiefpunkte. Setzt man die x-Werte in die zweite Ableitung ein, erfährt man, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt. (Ist das Ergebnis von f''(x) ...
Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 2 | A.24.01
Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibts eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...
Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 4 | A.24.01
Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibts eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...
Kubische Funktion, Hochpunkte und Tiefpunkte kubischer Parabeln berechnen, Beispiel 3 | A.05.03
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach x auf, erhält man die x-Werte Hoch- und Tiefpunkte. Setzt man die x-Werte in die zweite Ableitung ein, erfährt man, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt. (Ist das Ergebnis von f''(x) ...
Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 5 | A.24.01
Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibts eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...
Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 6 | A.24.01
Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibts eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...
Kubische Funktion, Hochpunkte und Tiefpunkte kubischer Parabeln berechnen, Beispiel 1 | A.05.03
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach x auf, erhält man die x-Werte Hoch- und Tiefpunkte. Setzt man die x-Werte in die zweite Ableitung ein, erfährt man, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt. (Ist das Ergebnis von f''(x) ...
Quelle
Systematik
- Mathematik (13)
- Mathematisch-Naturwissenschaftliche Fächer (13)
- Differentialrechnung (2)
- Zuordnungen, Funktionen (2)
- Ortskurven (1)
Schlagwörter
- Hochpunkt (11)
- Funktion (Mathematik) (11)
- Analysis (11)
- E-Learning (11)
- Video (11)
- Ortskurve (9)
- Extrempunkt (7)