Grenzwert e-Funktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Exponentialfunktion: Asymptote und Grenzwert berechnen | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 5 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 4 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 3 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 6 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Asymptote und Grenzwert berechnen | A.16
Asymptoten sind Geraden, an welche sich Funktionen annähern. Man kann einerseits senkrechte Asymptoten berechnen, und mit einer anderen Rechnung kann man waagerechte bzw. schiefe Asymptote berechnen. Das Ziel der Asymptotenberechnung ist zu erfahren, wie sich Funktionen im Unendlichen verhalten. Ganzrationale Funktionen (Polynome) haben nie eine Asymptote. Waagerechte oder ...
Quelle
Systematik
- Mathematik (69)
- Mathematisch-Naturwissenschaftliche Fächer (69)
- Zuordnungen, Funktionen (8)
- Differentialrechnung (3)
- Grenzwerte von Funktionen (1)
- Flächenberechnung (1)
- Stammfunktion (1)
Schlagwörter
- Analysis (59)
- Funktion (Mathematik) (56)
- E-Learning (56)
- Video (56)
- Asymptote (45)
- Grenzwert (40)
- Bruchrechnung (39)