Geradengleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Geradengleichung über Normalform aus zwei Punkten bestimmen, Beispiel 3 | A.02.11
Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für x und y in die Geradengleichung: y=m*x+b ein. Durch das Einsetzen jedes Punktes erhält man je eine Gleichung (also ein Gleichungssystem mit m und b als Unbekannte). ...
Geradengleichung aus P und m über Normalform bestimmen, Beispiel 2 | A.02.08
Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für m und die Koordinaten des Punktes für x und y in die Gleichung y=m*x+b einsetzen um b zu bestimmen. Nun setzt man die Werte für m und b wieder ein und hat die ...
Geradengleichung über Normalform aus zwei Punkten bestimmen | A.02.11
Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für x und y in die Geradengleichung: y=m*x+b ein. Durch das Einsetzen jedes Punktes erhält man je eine Gleichung (also ein Gleichungssystem mit m und b als Unbekannte). ...
Geradengleichung aus P und m über Normalform bestimmen | A.02.08
Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für m und die Koordinaten des Punktes für x und y in die Gleichung y=m*x+b einsetzen um b zu bestimmen. Nun setzt man die Werte für m und b wieder ein und hat die ...
Geradengleichung aus P und m über Normalform bestimmen, Beispiel 6 | A.02.08
Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für m und die Koordinaten des Punktes für x und y in die Gleichung y=m*x+b einsetzen um b zu bestimmen. Nun setzt man die Werte für m und b wieder ein und hat die ...
Geradengleichung über Normalform aus zwei Punkten bestimmen, Beispiel 4 | A.02.11
Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für x und y in die Geradengleichung: y=m*x+b ein. Durch das Einsetzen jedes Punktes erhält man je eine Gleichung (also ein Gleichungssystem mit m und b als Unbekannte). ...
Geradengleichung aus P und m über Normalform bestimmen, Beispiel 3 | A.02.08
Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für m und die Koordinaten des Punktes für x und y in die Gleichung y=m*x+b einsetzen um b zu bestimmen. Nun setzt man die Werte für m und b wieder ein und hat die ...
Geradengleichung über Normalform aus zwei Punkten bestimmen, Beispiel 2 | A.02.11
Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für x und y in die Geradengleichung: y=m*x+b ein. Durch das Einsetzen jedes Punktes erhält man je eine Gleichung (also ein Gleichungssystem mit m und b als Unbekannte). ...
Geradengleichung aus P und m über Normalform bestimmen, Beispiel 7 | A.02.08
Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für m und die Koordinaten des Punktes für x und y in die Gleichung y=m*x+b einsetzen um b zu bestimmen. Nun setzt man die Werte für m und b wieder ein und hat die ...
Geradengleichung aus P und m über Normalform bestimmen, Beispiel 4 | A.02.08
Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für m und die Koordinaten des Punktes für x und y in die Gleichung y=m*x+b einsetzen um b zu bestimmen. Nun setzt man die Werte für m und b wieder ein und hat die ...
Quelle
Systematik
- Mathematik (90)
- Mathematisch-Naturwissenschaftliche Fächer (90)
- Analytische Geometrie (3)
- Geraden, Ebenen (1)
Schlagwörter
- E-Learning (77)
- Video (77)
- Gerade (Mathematik) (68)
- Geradengleichung (66)
- Gleichung (Mathematik) (55)
- Koordinate (39)
- Punkt (38)