Gerade - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Flip the Classroom: Schnittwinkel
In diesem Video von Flip the classroom wird sehr anschaulich und sehr ausführlich erklärt, wie man den Schnittwinkel zwischen Gerade-Gerade, Ebene-Ebene und Gerade-Ebene bestimmt.
Abstand Gerade-Kugel berechnen | V.06.12
Abstand Gerade-Kugel berechnet man, indem man das Ganze sofort auf Abstand Punkt-Gerade zurückführt. Man berechnet also den Abstand vom Mittelpunkt zur Gerade (mit welcher Methode auch immer) und zieht den Kugelradius ab. Ist der Abstand kleiner als der Kugelradius, so schneiden sich Kugel und Gerade. Sind beide genau gleich, berühren sich Gerade und Kugel. Die Gerade ist ...
Abstand Gerade-Kugel berechnen, Beispiel 1 | V.06.12
Abstand Gerade-Kugel berechnet man, indem man das Ganze sofort auf Abstand Punkt-Gerade zurückführt. Man berechnet also den Abstand vom Mittelpunkt zur Gerade (mit welcher Methode auch immer) und zieht den Kugelradius ab. Ist der Abstand kleiner als der Kugelradius, so schneiden sich Kugel und Gerade. Sind beide genau gleich, berühren sich Gerade und Kugel. Die Gerade ist ...
Abstand Gerade-Kugel berechnen, Beispiel 2 | V.06.12
Abstand Gerade-Kugel berechnet man, indem man das Ganze sofort auf Abstand Punkt-Gerade zurückführt. Man berechnet also den Abstand vom Mittelpunkt zur Gerade (mit welcher Methode auch immer) und zieht den Kugelradius ab. Ist der Abstand kleiner als der Kugelradius, so schneiden sich Kugel und Gerade. Sind beide genau gleich, berühren sich Gerade und Kugel. Die Gerade ist ...
Abstand Gerade-Kugel berechnen, Beispiel 3 | V.06.12
Abstand Gerade-Kugel berechnet man, indem man das Ganze sofort auf Abstand Punkt-Gerade zurückführt. Man berechnet also den Abstand vom Mittelpunkt zur Gerade (mit welcher Methode auch immer) und zieht den Kugelradius ab. Ist der Abstand kleiner als der Kugelradius, so schneiden sich Kugel und Gerade. Sind beide genau gleich, berühren sich Gerade und Kugel. Die Gerade ist ...
Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 2 | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 1 | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Abstand Punkt Gerade berechnen über Sinus des Winkels | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 3 | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Spiegeln einer Gerade oder einer Ebene an irgendwas, Beispiel 6 | V.04.05
Will man eine Gerade an irgendetwas spiegeln (also eine Gerade am Punkt spiegeln oder Gerade an Gerade spiegeln oder Gerade an Ebene spiegeln), sucht man sich irgendwelche Punkte der Ausgangsgerade aus und spiegelt beide Punkt am anderen Punkt/Gerade/Ebene. Man erhält zwei Spiegelpunkte, aus denen man die Spiegelgerade aufstellt. Will man eine Ebene spiegeln (egal ob am ...