Gaußverteilung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Gauß Verteilung, Gauß Glockenkurve: was das ist und wie man damit rechnet, Beispiel 2 | W.18.01
Bei stetigen Verteilungen (bei Verteilungen, in denen jede beliebige Kommazahl angenommen werden kann) berechnet man immer nur eine Wahrscheinlichkeit zwischen zwei Grenzen. Diese W.S. berechnet mal als Integral, wobei die Integralgrenzen die eben genannten Grenzen sind. Die Funktion, die man dafür braucht, ist die Normal-Verteilung, die die Gaußsche Glockenkurve beschreibt. ...
Gauß Verteilung, Gauß Glockenkurve: was das ist und wie man damit rechnet | W.18.01
Bei stetigen Verteilungen (bei Verteilungen, in denen jede beliebige Kommazahl angenommen werden kann) berechnet man immer nur eine Wahrscheinlichkeit zwischen zwei Grenzen. Diese W.S. berechnet mal als Integral, wobei die Integralgrenzen die eben genannten Grenzen sind. Die Funktion, die man dafür braucht, ist die Normal-Verteilung, die die Gaußsche Glockenkurve beschreibt. ...
Moivre-Laplace Näherungsformel | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Gauß Verteilung, Gauß Glockenkurve: was das ist und wie man damit rechnet, Beispiel 1 | W.18.01
Bei stetigen Verteilungen (bei Verteilungen, in denen jede beliebige Kommazahl angenommen werden kann) berechnet man immer nur eine Wahrscheinlichkeit zwischen zwei Grenzen. Diese W.S. berechnet mal als Integral, wobei die Integralgrenzen die eben genannten Grenzen sind. Die Funktion, die man dafür braucht, ist die Normal-Verteilung, die die Gaußsche Glockenkurve beschreibt. ...
Moivre-Laplace Näherungsformel, Beispiel 1 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Quelle
Systematik
Schlagwörter
- Laplace (4)
- Laplace Gleichung (4)
- Laplace Bedingung (4)
- Moivre-Laplace (4)
- Standard-Normal-Verteilung (3)
- Normal-Verteilung (3)
- Gaußverteilung (3)