Gauß-Jordan - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Gauß'sches Eliminationsverfahren
Gaußsches Eliminationsverfahren. Theoretische Grundlagen und programmierte Realisierung. Facharbeit von Florian Michahelles, Abiturjahrgang 1992/1994, Werner-von-Siemens-Gymnasium Weißenburg/Bay. .Diese Facharbeit behandelt drei Verfahren zur Lösung linearer Gleichungssysteme. Im ersten werden zunächst die theoretischen Grundlagen der Verfahren dargelegt, im zweiten Teil ...
Determinante berechnen bei 4x4-Matrizen | M.04.03
Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...
Determinante berechnen bei 4x4-Matrizen, Beispiel 3 | M.04.03
Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...
Determinante berechnen bei 4x4-Matrizen, Beispiel 2 | M.04.03
Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...
Determinante berechnen bei 4x4-Matrizen, Beispiel 1 | M.04.03
Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...
Wissenswertes über Carl Friedrich Gauß
Wissenswertes über Carl Friedrich Gauß finden Schülerinnen und Schüler auf dieser Seite.
Hintergrundinformationen über Carl Friedrich Gauß
Thematische Hintergrundinformationen über den Mathematiker Carl Friedrich Gauß finden Sie auf dieser Seite.
Hintergrundinformationen über Carl Friedrich Gauß
Thematische Hintergrundinformationen über den Mathematiker Carl Friedrich Gauß finden Sie auf dieser Seite.
Wer war eigentlich C. Friedrich Gauß?
Wer war eigentlich C. Friedrich Gauß?
Carl Friedrich Gauß sein Leben
Hier finden Schülerinnen und Schüler Wissenswertes und Informatives über das Leben von Carl Friedrich Gauß.