GTR - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Binomialverteilung mit GTR oder CAS berechnen, Beispiel 2 | W.16.03
Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.
Binomialverteilung mit GTR oder CAS berechnen, Beispiel 1 | W.16.03
Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.
Binomialverteilung mit GTR oder CAS berechnen, Beispiel 4 | W.16.03
Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.
Binomialverteilung mit GTR oder CAS berechnen, Beispiel 3 | W.16.03
Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.
Wie man mit GTR und CAS rechnet | A.29
Ein grafischer Taschenrechner (GTR) oder ein Computer Algebra System (CAS) erlaubt natürlich Rechnungen, die von Hand niemals möglich sind (oder zumindest nicht in der kurzen Zeit). Wir machen hier ein paar Beispiele zu solchen Rechnungen. Als Schüler/Student ist es Ihre Aufgabe zu wissen, wie man den GTR/CAS bedient (also: Nullstellen berechnen, Gleichungen lösen, Hoch- ...
Binomialverteilung mit GTR oder CAS berechnen | W.16.03
Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.
Rechnen können mit GTR / CAS - Abituraufgabe 1f | A.29.2
Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) ...
Rechnen können mit GTR / CAS - Abituraufgabe 2a | A.29.03
Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man braucht: Nullstellen, Hoch- Tiefpunkte, eine Tangente, desweiteren taucht auf: ein Parallelogramm, eine Extremwertaufgabe und ein kleiner Frosch. Der Sinn ist auch hier alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.
Rechnen können mit GTR / CAS - Abituraufgabe 1c | A.29.2
Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) ...
Rechnen können mit GTR / CAS - Übungen / Abituraufgabe 2 | A.29.03
Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man braucht: Nullstellen, Hoch- Tiefpunkte, eine Tangente, desweiteren taucht auf: ein Parallelogramm, eine Extremwertaufgabe und ein kleiner Frosch. Der Sinn ist auch hier alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.