Formel (Mathemaitk) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Formel (Mathemaitk) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Trigonometrische Funktionen: kurze Einführung | A.42
Trigonometrische Funktionen sind periodisch, wiederholen sich also in regelmäßigen Abständen. Der Abstand, bis es zur nächsten Wiederholung kommt, nennt sich Periode. Die wichtigsten periodischen Funktionen der Trigonometrie sind die Sinus, die Kosinus und die Tangens-Funktion (abgekürzt; sin(x), cos(x), tan(x)). Unwichtige periodische Funktionen sind Kotangens, Sekans ...
Gleichung dritten Grades; Nullstellen kubische Parabel berechnen | A.05.01
Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.
Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 3 | A.05.01
Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.
Periode von trigonometrischen Funktionen berechnen | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...
Periode von trigonometrischen Funktionen berechnen, Beispiel 2 | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...
Periode von trigonometrischen Funktionen berechnen, Beispiel 1 | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...
Periode von trigonometrischen Funktionen berechnen, Beispiel 3 | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...