Flächeninhaltsformel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 3 | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 2 | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 1 | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Flächen und Flächeninhalt berechnen | A.03
Fast alle Flächen werden auf Dreiecksflächen zurückgeführt. Wie berechnet man die Fläche eines Dreiecks? Es gibt (wie immer) mehrere Möglichkeiten. Wenn Sie Glück haben, ist eine der drei Seiten parallel zur x- oder zur y-Achse. Dann kommt man recht gut über Standardformel A=½*g*h weiter. Wenn zwar keine der Seiten parallel zu den Koordinatenachsen ist, aber die ...
Achsparallele Flächen berechnen, Beispiel 4 | A.03.01
Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...
Achsparallele Flächen berechnen, Beispiel 3 | A.03.01
Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...
Achsparallele Flächen berechnen, Beispiel 1 | A.03.01
Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...
Achsparallele Flächen berechnen | A.03.01
Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...
Achsparallele Flächen berechnen, Beispiel 2 | A.03.01
Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...