FLAECHENBERECHNUNG - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

FLAECHENBERECHNUNG - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Bestimmtes und unbestimmtes Integral
Auf dieser Seite von serlo.org wird sehr gut der Unterschied zwischen bestimmtem und unbestimmtem Integral erklärt.
Ebene Flächen - Dreiecke
Auf dieser Seite finden Sie Grundlagen zum Thema Dreiecke: Beschriftung, Arten von Dreiecken, Flächenberechung, Umfangberechnung, Besondere Punkte, Eulersche Gerade uvm.
Flächenberechnung
Er besteht aus vier Arbeitsblättern zu den Themen Parallelogramm, Dreieck, Trapez, sowie Vielecken (AB1-AB4). Zu jedem dieser vier Arbeitsblätter gibt es dabei ein Video, das erklärt wieso und wie bei den jeweiligen Themenbereichen gerechnet werden muss.
Flächenberechnung
Er besteht aus vier Arbeitsblättern zu den Themen Parallelogramm, Dreieck, Trapez, sowie Vielecken (AB1-AB4). Zu jedem dieser vier Arbeitsblätter gibt es dabei ein Video, das erklärt wieso und wie bei den jeweiligen Themenbereichen gerechnet werden muss.
Dreiecksfläche berechnen, Beispiel 2 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Fläche berechnen über Integral | A.18.01
Kurzer Überblick über die Vorgehensweise bei Integralen: Man kann eine Fläche berechnen, indem man das Integral von „oberer Funktion“ minus „unterer Funktion“ bildet. (Eine „Funktion integrieren“ ist also nichts anderes als das Bilden der Stammfunktion). In die Stammfunktion setzt man nun die beiden Integralgrenzen ein und zieht die Ergebnisse von einander ...
Integralfunktion bestimmen, Beispiel 1 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Mathe - Flächenberechnung
Auf diesem werbefinanzierten Portal finden Sie Erklärungen und Aufgaben zur Flächenberechnung von Dreiecken, Vierecken, Rechtecken, Quadraten, etc. Das bildet die Grundlage für die weitere Mathematik und findet auch im Alltag Anwendung, wenn es z.B. darum geht, auszurechnen wieviel Farbe fürs Anstreichen der Wand benötigt wird, wieviel Saatgut man für den anzulegenden ...
Integralfunktion bestimmen | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Mittelwert und Durchschnitt einer Funktion berechnen, Beispiel 3 | A.18.07
Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.