FLAECHENBERECHNUNG - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

FLAECHENBERECHNUNG - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Bestimmtes und unbestimmtes Integral
Auf dieser Seite von serlo.org wird sehr gut der Unterschied zwischen bestimmtem und unbestimmtem Integral erklärt.
Ebene Flächen - Dreiecke
Auf dieser Seite finden Sie Grundlagen zum Thema Dreiecke: Beschriftung, Arten von Dreiecken, Flächenberechung, Umfangberechnung, Besondere Punkte, Eulersche Gerade uvm.
Flächenberechnung
Er besteht aus vier Arbeitsblättern zu den Themen Parallelogramm, Dreieck, Trapez, sowie Vielecken (AB1-AB4). Zu jedem dieser vier Arbeitsblätter gibt es dabei ein Video, das erklärt wieso und wie bei den jeweiligen Themenbereichen gerechnet werden muss.
Flächenberechnung
Er besteht aus vier Arbeitsblättern zu den Themen Parallelogramm, Dreieck, Trapez, sowie Vielecken (AB1-AB4). Zu jedem dieser vier Arbeitsblätter gibt es dabei ein Video, das erklärt wieso und wie bei den jeweiligen Themenbereichen gerechnet werden muss.
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 1 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Mittelwert und Durchschnitt einer Funktion berechnen, Beispiel 1 | A.18.07
Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 3 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Dreiecksfläche berechnen, Beispiel 4 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Mittelwert und Durchschnitt einer Funktion berechnen, Beispiel 2 | A.18.07
Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 4 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.