Extrema - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Extrema - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Extrema berechnen
Die normalen Extrema einer stetig differenzierbaren Funktion findet man an Nullstellen ihrer Ableitung (jedoch nicht unbedingt an allen!). Um die x-Werte der Hoch- und Tiefpunkte zu finden reicht es, die Nullstellen der 1. Ableitung zu finden und zu überprüfen, ob an diesen Stellen wirklich Extrema vorliegen.
So führt man eine Kurvendiskussion bzw. eine Funktionsanalyse Schritt für Schritt durch | A.19
Hier finden Sie ein paar Beispiele zur Funktionsanalyse von Funktionen (bzw. Kurvendiskussion). Nullstellen, Extrema, etc..
Kurvendiskussion Beispiel 2d: Extrema berechnen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Kurvendiskussion Beispiel 1d: Extrema berechnen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Kurvendiskussion Beispiel 3d: Extrema berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Kurvendiskussion Online-Rechner
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier gelangen Sie zu einem Online-Rechner für Kurvendiskussionen, der den Rechenweg mit anzeigt.
Kurvendiskussion Beispiel 1f: Funktion zeichnen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Kurvendiskussion Beispiel 5c: Nullstellen berechnen | A.19.05
Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.
Kurvendiskussion Beispiel 4b: Funktion auf Symmetrie untersuchen | A.19.04
Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.
Kurvendiskussion Beispiel 4f: Funktion zeichnen | A.19.04
Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.