Entfernungen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Entfernung berechnen, Beispiel 7 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 5 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Entfernung berechnen, Beispiel 1 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 2 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 3 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 4 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 6 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Globaler Verkehr
Wir reisen immer mehr, mit zunehmender Geschwindigkeit und über größere Entfernungen. Das trägt zum weltweiten Anstieg des Bedarfs an Transportmitteln bei, und dieser Trend wird auch künftig anhalten. MIT OFFENEN KARTEN untersucht, worauf dieser Anstieg, von dem sowohl die individuelle Mobilität als auch der Warenverkehr betroffen sind, beruht. (März ...
Größen - Sachaufgaben (Problemlösen lernen)
Aufgaben zum Problemlösen lernen.