Einheitskreis - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Einheitskreis - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Einheitskreis: was ist das und wofür man ihn braucht | T.01.03
Der Einheitskreis hat den Mittelpunkt im Ursprung der Koordinatensystems und hat einen Radius von „1“. Man kann am Einheitskreis ganz viele Theorie zu Sinus, Kosinus, Tangens herleiten und veranschaulichen. Sie werden den Einheitskreis nicht unbedingt brauchen, man kann alles auch anders herleiten oder sich merken. Manche Leute finden die Veranschaulichung am Einheitskreis ...
Veranschaulichung von Sinus und Kosinus am Einheitskreis
Auf dieser Seite des Landesbildungsservers Baden-Württemberg wird mithilfe einer Animation in den Sinus und Cosinus am Einheitskreis eingeführt.
Winkelfunktionen 2
Drei Applets zeigen jeweils die Definition der drei Winkelfunktionen am Einheitskreis. Bei Eingabe eines Winkels wird veranschaulicht, wie die Funktionswerte zustande kommen.
Trigonometrie - Arbeitsblätter
Arbeitsblätter zu folgenden Themen: Berechnung rechtwinkliger Dreiecke mit dem Sinus Berechnung rechtwinkliger Dreiecke mit Cosinus, Tangens und Cotangens Definition der Sinus- und Cosinusfunktion am Einheitskreis
DynaGeo: Sinus, Kosinus & Tangens am Einheitskreis
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Sinus, Kosinus und Tangens eines Winkels
In dieser Unterrichtseinheit zum Thema "Sinus, Kosinus und Tangens" wird den Lernenden anhand von Java-Applets der Zusammenhang zwischen dem Winkel am Einheitskreis und den dazugehörigen trigonometrischen Funktionen schnell und verständlich nahe gebracht.
Hintergrundwissen: Winkelfunktionen
In diesem grundlegenden Artikel über Winkelfunktionen von mathe-online.at werden alle wichtigen Themen erläutert: Die Definitionen, die trigonometrischen Funktionen im Einheitskreis, die Eigenschaften, die Periodizität, die Identitäten mit Supplementär- und Komplementärwinkeln, die Quadrantenbeziehungen, die Additionstheoreme, die speziellen Winkel, das Bogenmaß, die ...
Die Sinusfunktion: Schwingungen und Schwebungen
In dieser Unterrichtseinheit zum Thema trigonometrische Funktionen wird die Sinusfunktion fächerübergreifend als Schwingungsfunktion eingeführt. Darauf aufbauend kann die Trigonometrie als Anwendungsbereich behandelt werden.