Dreiecksfläche berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 3 | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Flächeninhalt Dreieck berechnen über A=1/2*g*h | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 1 | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 2 | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 3 | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 1 | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 2 | A.03.04
Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...
Dreiecksfläche berechnen, Beispiel 2 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Dreiecksfläche berechnen, Beispiel 4 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.