Ding - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Einfache trigonometrische Gleichungen lösen, Beispiel 6 | A.42.02
Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in Ding sollte ein x drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach Ding auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...
Einfache trigonometrische Gleichungen lösen, Beispiel 5 | A.42.02
Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in Ding sollte ein x drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach Ding auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...
Einfache trigonometrische Gleichungen lösen, Beispiel 4 | A.42.02
Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in Ding sollte ein x drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach Ding auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...
Einfache trigonometrische Gleichungen lösen, Beispiel 1 | A.42.02
Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in Ding sollte ein x drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach Ding auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...
Einfache trigonometrische Gleichungen lösen | A.42.02
Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in Ding sollte ein x drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach Ding auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...
Einfache trigonometrische Gleichungen lösen, Beispiel 3 | A.42.02
Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in Ding sollte ein x drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach Ding auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...
Einfache trigonometrische Gleichungen lösen, Beispiel 2 | A.42.02
Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in Ding sollte ein x drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach Ding auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...
Logarithmusfunktion: Gleichungen lösen | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Logarithmusfunktion: Gleichungen lösen, Beispiel 5 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Logarithmusfunktion: Gleichungen lösen, Beispiel 4 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Quelle
Systematik
- Mathematik (15)
- Mathematisch-Naturwissenschaftliche Fächer (15)
- Sozialkundlich-Philosophische Fächer (4)
- Berufsweg, Fort- und Weiterbildung (2)
- Schule, Ausbildung (2)
- Gesellschaftspolitische Gegenwartsfragen (2)
- Berufskunde (2)
Schlagwörter
- E-Learning (14)
- Video (14)
- Gleichung (Mathematik) (13)
- Funktion (Mathematik) (13)
- Analysis (13)
- Trigonometrische Gleichungen (7)
- Tangens (7)