Differenzierbarkeit (Math) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Differenzierbarkeit (Math) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Differenzierbarkeit (Mathematik)
Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.
Stetigkeit (Mathematik)
Eine Funktion f heißt genau dann stetig an einer Stelle x_0, wenn der Funktionswert an dieser Stelle mit sowohl links- als auch rechtsseitigem Grenzwert identisch ist.
Grenzwert bestimmen
Der Grenzwert einer Summe ist die Summe der Grenzwerte und der Grenzwert eines Produktes ist das Produkt der Grenzwerte.
Grenzwertbetrachtung (Mathematik)
Die Grenzwertbetrachtung dient dazu, das Verhalten einer Funktion und ihres Graphen entweder im Unendlichen oder an einer bestimmten Stelle (meist Definitionslücke) zu ermitteln.
Regel von L'Hospital (Mathematik)
Die Regel von L’Hospital ist ein Hilfsmittel zum Berechnen von Grenzwerten bei Brüchen von Funktionen f und g, wenn Zähler und Nenner entweder beide gegen 0 oder beide gegen (+ oder -) unendlich gehen.