Differentialquotient - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lernpfad: Differenzenquotient und Differentialquotient
In diesem Lernpfad von mathe-online.at lernen die Schülerinnen und Schüler, wie man den Differenzen- und Differentialquotient bildet und wie man ihn für Kurvendiskussionen benutzt.
Einführung des Differentialquotienten und des Ableitungsbegriffes
In dieser Unterrichtseinheit der Didaktik der Uni Bayreuth geht es um die Erarbeitung des schwierigen Überganges vom Differenzen- zum Differentialquotienten in der Analysis.
Produktregel
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird die Produktregel hergeleitet und bewiesen.
Tangente, Tangentengleichung aufstellen
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Eine Definition, die Herleitung und beispiele zur Tangente finden Lehrer und Schüler hier.
Differentialquotient
Die Verknüpfung zwischen grafischer Anschauung mit einem Java-Applet und Rechnung führt zu einem sicheren Umgang mit dem Differenzialquotienten (Jahrgangsstufe 11).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 15; Höchstalter: 18
Lernvideo: Ableitung der Wurzelfunktion mittels der Def. der 1. Abl.
In diesem YouTube-Video von ARTMath100 wird die Ableitung der Wurzelfunktion über die Definition der 1. Ableitung als Differentialquotient hergeleitet. Dies ist zwar schwieriger als die Benutzung der Potenzregel, aber aus mathematischer Sicht wesentlich spannender. Am Schluß wird auch die Potenzregel benutzt, um den Schülern beide Wege plausibel zu ...
Differenzierbarkeit (Mathematik)
Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.