Binomialverteilung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 4 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 2 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 3 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 1 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Approximation der Binomialverteilung
Auf dieser Seite von mathematik.ch wird interaktiv die Approximation der Binomialverteilung durch die Normalverteilung veranschaulicht.
Bernoulli-Ketten und Binomialverteilung
Auf dieser Seite vom Landesbildungsserver Baden-Württemberg werden wichtige Begriffe bezüglich der Binomialverteilung erklärt. Viele Animationen und Beispiele helfen beim Verständnis.
Erwartungswert und Varianz bei der Binomialverteilung berechnen | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Video zur Bedienung des Galton-Bretts
Hier erfährst du viel Interessantes über das zentrale Thema in der Stochastik, die Binomialverteilung und die dazugehörige Bernoulli-Formel. Folgende Fragen werden beantwortet: Welches Vorwissen benötigst du? Was sind Bernoulli-Ketten? Wie kann man die Bernoulli-Formel herleiten? Wie kann man mit der Binomialverteilung Aufgaben lösen? Welche Eigenschaften hat die ...