Berechnung Dreieck - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 3 | A.03.02
Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 1 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 2 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 3 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen | A.03.02
Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...
Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 1 | A.03.02
Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...
Quelle
Systematik
- Mathematik (15)
- Mathematisch-Naturwissenschaftliche Fächer (14)
- Fachdidaktik (5)
- Zahlen (5)
- Fächerübergreifende Themen (5)
- Grundschule (5)
- Berufliche Bildung (2)
Schlagwörter
- Dreieck (6)
- Geometrie (6)
- Deckfläche (4)
- Prisma Berechnen (4)
- Schiefes Prisma (4)
- Prisma-Volumen (4)
- Dreiecksfläche (4)
Bildungsebene
Lernressourcentyp
- Unterrichtsplanung (3)
- Video/animation (2)
- Interaktives Material (1)
- Arbeitsblatt (1)
- Lernkontrolle (1)