Berechnung Dreieck - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Berechnung Dreieck - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Geometrie - Berechnung von Flächen: Dreieck - Berechnung der Fläche
Diese Filmsequenz bietet eine Begriffsklärung. Zudem werden zwei identische Dreiecke zur Bestimmung der Dreiecksfläche zu einem Parallelogramm zusammengefügt.
Geometrie: Videos zu Längen, Flächen und Winkeln
In diesem Videokurs für den Geometrie-Unterricht erwerben die Schülerinnen und Schüler Basiskompetenzen in der Berechnung von Umfang, Flächeninhalt und Winkeln bei verschiedenen geometrischen Figuren.
Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 3 | A.03.02
Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 1 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 2 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 3 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Kreise im gleichseitigen Dreieck
In der Unterrichtseinheit zum Thema "Kreise im gleichseitigen Dreieck" stellen die Schülerinnen und Schüler geometrische Betrachtungen zum Einbeschreiben in Dreiecken an und erarbeiten die algebraische Berechnung von Radien und Flächen.
Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen | A.03.02
Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...
Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 1 | A.03.02
Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...