Bank (Geldinstitut) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Finanzmathematik: kurze Einführung | A.55
Die Finanzmathematik befasst sich natürlich mit der Berechnung von verschiedenen finanzmathematischen Problemen. In diesem Kapitel betrachten wir: 1.Zinseszins-Berechnungen, 2.Rentenrechnung (Ratensparen), 3.Annuitäten-Rechnung (Tilgungsrechnung), 4.Bar- und Endwerte (mit Begriffen wie vor- und nachschüssig)
Rentenrechnung: so rechnet man richtig, Beispiel 3 | A.55.02
Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...
Rentenrechnung: so rechnet man richtig, Beispiel 2 | A.55.02
Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...
Rentenrechnung: so rechnet man richtig, Beispiel 1 | A.55.02
Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...
Rentenrechnung: so rechnet man richtig | A.55.02
Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 1 | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 3 | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 2 | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
Zinseszinsrechnung: so rechnet man Zinseszins richtig | A.55.01
Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das ...