Asymptotisches Verhalten - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Schaubild einer Wurzelfunktion erstellen, Beispiel 3 | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Schaubild einer Wurzelfunktion erstellen | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Schaubild einer Wurzelfunktion erstellen, Beispiel 2 | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Schaubild einer Wurzelfunktion erstellen, Beispiel 1 | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Kurvendiskussion Beispiel 4b: Funktion auf Symmetrie untersuchen | A.19.04
Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.
Kurvendiskussion Beispiel 2a: Ableitungen bestimmen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Kurvendiskussion Beispiel 5d: Extrempunkte berechnen | A.19.05
Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.
So führt man eine Kurvendiskussion bzw. eine Funktionsanalyse Schritt für Schritt durch | A.19
Hier finden Sie ein paar Beispiele zur Funktionsanalyse von Funktionen (bzw. Kurvendiskussion). Nullstellen, Extrema, etc..
Kurvendiskussion Beispiel 1: Symmetrie zur y-Achse und Berührpunkte mit der x-Achse | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Kurvendiskussion Beispiel 4d: Extrempunkte berechnen | A.19.04
Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.