Achsen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Achsen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lernvideo: Achsen- und Punktsymmetrie
In diesem Lernvideo von echteinfach.tv wird sehr anschauich die Achsen- und Punktsymmetrie anhand der quadratischen bzw. der kubischen Funktion erklärt. Dieses Wissen benötigen die Schülerinnen und Schüler bis zum Abitur.
Lernvideo: Achsen- und Punktsymmetrie
In diesem Lernvideo von echteinfach.tv wird sehr anschaulich die Punkt- und Achsensymmetrie erklärt. Die Gleichungen f(x)=f(-x) für die Achsensymmetrie und entsprechend f(x)=-f(-x) für die Punktsymmetrie werden ausführlich hergeleitet. Sie sind auch sehr wichtig für die Oberstufe.
Geraden einzeichnen, Beispiel 6 | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Geraden einzeichnen, Beispiel 2 | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Geraden einzeichnen, Beispiel 4 | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Geraden einzeichnen, Beispiel 1 | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Geraden einzeichnen | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Geraden einzeichnen, Beispiel 3 | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Geraden einzeichnen, Beispiel 7 | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Ebenenformen: Achsen-Abschnitts-Form | V.01.04
Für eine Ebene gibt es verschiedene Darstellungsmöglichkeiten, sprich Ebenenformen. 1. Parameterform (PF), 2.Koordinatenform (KF), 3.Normalenform (NF), 4.Hesse-Normal-Form (HNF), 5.Achsen-Abschnitts-Form (AAF). Die ersten beiden sind die wichtigsten. Man benötigt für verschiedene Berechnungen mal die eine, mal die andere. Es ist wichtig, zu wissen, wie man eine Ebenenform ...