Abnahme - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Exponentielles Wachstum berechnen, Beispiel 1 | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Exponentielles Wachstum berechnen, Beispiel 5 | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Exponentielles Wachstum berechnen | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Exponentielles Wachstum berechnen, Beispiel 6 | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Exponentielles Wachstum berechnen, Beispiel 4 | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Bestandsänderung berechnen, Beispiel 2 | A.31.01
Bei ganz vielen Aufgaben geht es einen Bestand (z.B. eine Temperatur, eine Wassermenge im Behälter, ) und die Änderung von diesem Bestand (die Temperaturzu- oder -abnahme, die Zunahme vom Wasserbestand oder dessen Abnahme,...). Nun geht es darum, dass die Funktion, die die Änderung beschreibt, die Ableitung der Bestandsfunktion ist. Sie werden es nicht glauben: aus dieser ...
Bestandsänderung berechnen, Beispiel 1 | A.31.01
Bei ganz vielen Aufgaben geht es einen Bestand (z.B. eine Temperatur, eine Wassermenge im Behälter, ) und die Änderung von diesem Bestand (die Temperaturzu- oder -abnahme, die Zunahme vom Wasserbestand oder dessen Abnahme,...). Nun geht es darum, dass die Funktion, die die Änderung beschreibt, die Ableitung der Bestandsfunktion ist. Sie werden es nicht glauben: aus dieser ...
Exponentielles Wachstum berechnen, Beispiel 3 | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Bestandsänderung berechnen | A.31.01
Bei ganz vielen Aufgaben geht es einen Bestand (z.B. eine Temperatur, eine Wassermenge im Behälter, ) und die Änderung von diesem Bestand (die Temperaturzu- oder -abnahme, die Zunahme vom Wasserbestand oder dessen Abnahme,...). Nun geht es darum, dass die Funktion, die die Änderung beschreibt, die Ableitung der Bestandsfunktion ist. Sie werden es nicht glauben: aus dieser ...
Exponentielles Wachstum berechnen, Beispiel 2 | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Quelle
- Bildungsmediathek NRW (55)
- Handwerk macht Schule (1)
- Deutscher Bildungsserver (1)
- Bildungsserver Hessen (1)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (57)
- Mathematik (56)
- Fächer der Beruflichen Bildung (2)
- Berufliche Bildung (2)
- Sonstige Spezielle Fächer der Beruflichen Bildung (1)
- Mathematik und Physik (1)
- Überblick, Allgemeines (1)
Schlagwörter
- Analysis (55)
- E-Learning (55)
- Video (55)
- Funktion (Mathematik) (52)
- Abnahme (45)
- Zunahme (45)
- Wachstum (42)