Ableitung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Exponentialfunktion: Ableitung, Beispiel 5 | A.41.03
Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art innere Ableitung ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion: Ableitung, Beispiel 6 | A.41.03
Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art innere Ableitung ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion: Ableitung | A.41.03
Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art innere Ableitung ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion: Ableitung, Beispiel 2 | A.41.03
Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art innere Ableitung ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion: Ableitung, Beispiel 3 | A.41.03
Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art innere Ableitung ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion: Ableitung, Beispiel 4 | A.41.03
Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art innere Ableitung ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion: Ableitung, Beispiel 1 | A.41.03
Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art innere Ableitung ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...
Komplizierte Exponentialfunktionen ableiten, Beispiel 3 | A.41.04
Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...
Quelle
- Bildungsmediathek NRW (428)
- Deutscher Bildungsserver (15)
- Lehrer-Online (8)
- Bildungsserver Hessen (8)
- Select Hessen (3)
- Elixier Community (1)
- Sächsischer Bildungsserver (1)
Systematik
- Mathematik (460)
- Mathematisch-Naturwissenschaftliche Fächer (460)
- Zuordnungen, Funktionen (17)
- Differentialrechnung (6)
- Fachdidaktik (6)
- Grundschule (6)
- Zahlen (5)
Schlagwörter
- Analysis (431)
- Video (419)
- E-Learning (418)
- Funktion (Mathematik) (415)
- Ableitung (385)
- Gerade (Mathematik) (149)
- Formel (Mathematik) (139)
Bildungsebene
Lernressourcentyp
- Arbeitsblatt (17)
- Video/animation (8)
- Unterrichtsplanung (5)
- Interaktives Material (3)
- Lernkontrolle (3)
- Anwendung/software (1)
- Kurs (1)