Abbildung (Mathematik) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Abbildung (Mathematik) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Zuordnungen
Hier findet Ihr zwei Arbeitsblaetter zum Thema proportionale Zuordnungen
Zuordnungen
Hier findet Ihr zwei Arbeitsblaetter zum Thema proportionale Zuordnungen
Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...