2x2-Matrizen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Determinante berechnen bei 2x2-Matrizen, Beispiel 3 | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Determinante berechnen bei 2x2-Matrizen, Beispiel 2 | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Determinante berechnen bei 2x2-Matrizen, Beispiel 1 | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Determinante berechnen bei 2x2-Matrizen | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Determinante: was ist das überhaupt und wie kann man Determinanten berechnen? | M.04
Eine Determinante ist einfach eine Zahl, die man einer Matrix zuordnet. Determinanten kann man nur bei quadratischen Matrizen ausrechnen! (Bei nicht-quadratischen Matrizen ist die Determinante immer Null.) Ganz pauschal kann man sagen, dass es immer böse ist, wenn die Determinante Null ist. (Ein Gleichungssystem ist nicht lösbar, wenn die Determinante Null ist; man kann eine ...
Matrizen und Lineares Gleichungssystem: welche Rechenoperationen es gibt | M.03
Mit Matrizen kann man die verschiedensten Rechnungen anstellen. Die häufigsten Rechenoperationen sind die Matrizenmultiplikation, das Invertieren von Matrizen (Inverse berechnen), das Transponieren von Matrizen und Lösen von Matrizengleichungen. Diese vier Operationen erläutern wir in den folgenden Kapiteln.
Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen, Beispiel 1 | G.02.08
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...
Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen | G.02.08
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...
Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen, Beispiel 2 | G.02.08
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...